Brennstoffzellenfahrzeug

Brennstoffzellenfahrzeuge sind Transportmittel, bei denen elektrische Energie aus den Energieträgern Wasserstoff, niedermolekularen Alkoholen (Methanol, Ethanol) oder Ammoniak durch eine Brennstoffzelle erzeugt und direkt mit dem Elektroantrieb in Bewegung umgewandelt oder zeitweise in einer Antriebsbatterie zwischengespeichert wird.

Der elektrische Speicher ermöglicht zum einen die Rekuperation, zum anderen entlastet er die Brennstoffzelle von Lastwechseln.

Der Aufbau des Antriebs entspricht damit einem seriellen Hybridantrieb. International ist die Abkürzung FC(E)V für englisch fuel cell (electric) vehicle üblich.

 

 

Diese Antriebsform gilt bei Straßenfahrzeugen nicht mehr nur als experimentell, sondern wird trotz Einschränkungen im Betrieb in Kleinserien gefertigt. Einschränkungen ergeben sich durch das noch dünne Netz an Wasserstofftankstellen. In Deutschland existiert mit Stand Januar 2022 eine Wasserstoff-Tankstellen-Infrastruktur aus 91 Tankstellen. 17 weitere sind in Realisierung. Der Tankvorgang dauert ca. 3–4 Minuten.

Eine Brennstoffzelle konnte nach einem Bericht von 2011 chemisch gebundene Energie mit einem Wirkungsgrad von bis zu 60 % direkt in elektrische Energie umwandeln. Die so gewonnene elektrische Energie wird in Traktionsbatterien gespeichert, die auch durch Rekuperation zurückgewonnene Bremsenergie speichern. Über Elektromotoren wird die elektrische Energie wieder in Bewegungsenergie umgewandelt. Die Brennstoffzelle lädt im Betrieb die Fahrbatterie nach und arbeitet so als „Range Extender“ zur Vergrößerung der Reichweite eines Fahrzeuges mit Elektroantrieb. Durch die zusätzliche Energieumwandlung liegt der Wirkungsgrad des Brennstoffzellenfahrzeuges unter dem eines reinen batterieelektrischen Elektrofahrzeugs. Während batterieelektrische Fahrzeuge nach Annahmen von 2014 Wirkungsgrade bis zu 70–80 % erreichen können, beträgt er bei Brennstoffzellenfahrzeugen Tank-to-Wheel rund 40–50 %; hierzu kommen weitere Verluste bei der Wasserstoffherstellung.

Günstiger ist hingegen die CO2-Bilanz für die Herstellung des Brennstoffzellensystems. Während für die Herstellung der Batterie eines E-Autos mit einer großen 75-kWh-Batterie und einer Reichweite von 500 km beim gegenwärtigen Energiemix und Technikstand etwa 7 Tonnen CO2 anfallen, sind es bei einem Brennstoffzellenfahrzeug mit gleicher Reichweite etwa 3,3 Tonnen, die Emissionen für den Aufbau der Wasserstoffinfrastruktur nicht berücksichtigt. In der Gesamtbilanz, die sowohl Herstellungsaufwand als auch Betriebsphase berücksichtigt, hat ein Brennstoffzellenfahrzeug wegen des niedrigeren Wirkungsgrades und damit dem deutlich höheren Energieverbrauch aber eine schlechtere CO2-Bilanz als ein vergleichbares Batteriefahrzeug. Dies gilt sowohl beim derzeitigen als auch bei einem rein regenerativen Strommix.

Während der Elektroantrieb bei reinen Elektroautos außer dem Reifenabrollgeräusch praktisch keine Lärmemissionen aufweist, entstehen beim Brennstoffzellenfahrzeug, vor allem durch Lüfter, die die Luft zuführen, und Zusatzaggregate wie Pumpen, geringe zusätzliche Geräusche. Die Betriebsgeräusche der Brennstoffzellenfahrzeuge liegen dabei deutlich unter denen verbrennungsmotorbetriebener Fahrzeuge. Die direkten Abgas-Fahrzeugemissionen bestehen bei reinem Wasserstoffbetrieb vor allem aus Wasserdampf bzw. Wasser. Somit tragen die Fahrzeuge zur Verbesserung der Luftqualität verkehrsreicher Gebiete bei.

An der Anode wird Wasserstoff oxidiert, das heißt, ihm werden Elektronen entzogen. Die Protonen durchdringen die Elektrolytmembran und fließen zur Kathode. Die Elektrolytmembran ist nur für die Protonen durchlässig, das heißt, dass die Elektronen „gezwungen“ sind, den äußeren Stromkreis (mit der Pufferbatterie bzw. dem Elektromotor) zu durchlaufen. Es gibt verschiedene Membransysteme für die Brennstoffzelle mit unterschiedlichem Wirkungsgrad und Arbeitstemperaturbereich. An der Kathode wird der mit dem Luftstrom herangeführte Sauerstoff reduziert, das heißt, Elektronen (die vorher dem Wasserstoff entzogen wurden) werden hinzugefügt. Danach treffen die negativ geladenen Sauerstoffionen auf die Protonen und reagieren zu Wasser. Damit wird der Stromkreislauf geschlossen. Gleichzeitig wird Wärme frei, die im Fahrzeug z. B. im Winter zu Heizzwecken genutzt werden kann, aber im Sommer mittels Lüfter abgeführt werden muss.

Für Brennstoffzellen-Pkw werden inzwischen Drucktanks aus kohlenstofffaserverstärktem Kunststoff (350–800 bar) verwendet, da die hiermit erzielbare Speicherdichte ausreicht, um Reichweiten von mehr als 500 km zu realisieren. Die Dichte von Druckgas kommt bei 700 bar schon etwa zu 56 % an die Dichte von flüssigem Wasserstoff heran.

Tiefkalter Flüssigwasserstoff (−253 °C, liquid H2) wird nur noch eingesetzt, wenn größere Mengen benötigt werden, z. B. bei Brennstoffzellenbussen. Für die Kompression auf 700 bar sind etwa 12 % der im Wasserstoff gebundenen Energie aufzuwenden. Dies muss als Umwandlungsverlust in die Energiebilanz eingehen. Bei der Verflüssigung sind 28–46 % aufzuwenden. Die Betankung erfolgt ähnlich der Betankung mit Flüssiggas oder Erdgas. Zusätzliche Verluste entstehen, wenn aus dem Fahrzeug oder dem Lagertank an der Tankstelle nicht regelmäßig Wasserstoff entnommen wird. Trotz hochwertiger Dämmung erwärmt sich der Flüssigwasserstoff und gast über Ablassventile aus.

Andere Formen der Speicherung von Wasserstoff in Fahrzeugen wie z. B. Metallhydridspeicher oder LOHC werden derzeit (2021) aufgrund von niedrigen volumen- oder massenbezogenen Speicherdichten nicht eingesetzt.

Es ist möglich, verschiedene energiehaltige Substanzen als Kraftstoff zu nutzen. Diese müssen für die Nutzung in der Brennstoffzelle zuvor in einem Reformer chemisch in gasförmigen Wasserstoff umgewandelt werden. Wird hierbei Methanol als Brennstoff genutzt, so wird das Brennstoffzellensystem als Reformed Methanol Fuel Cell (RMFC) bezeichnet. Unmittelbar nutzen Direktmethanolbrennstoffzellen (DMFC) den flüssigen Treibstoff Methanol, sie weisen jedoch einen niedrigen Wirkungsgrad auf.

Schon um 1995 beschäftigten sich Fahrzeugbauer intensiv mit Brennstoffzellen-Pkw. Daimler-Benz stellte mit dem Necar II (New Electric Car) ein Forschungsfahrzeug vor. Es folgten weitere Prototypen.

Honda zeigte mit dem FCX Clarity 2007 ein serienreifes Brennstoffzellenauto. Die ersten Exemplare wurden per Leasing an ausgewählte Kunden in Kalifornien übergeben.

Am 3. Juni 2008 erhielt der erste Toyota FCHV-adv in Japan seine Straßenzulassung. Am 1. September 2008 leaste das japanische Umweltministerium die ersten Toyota FCHV-adv Prototypen für die kommerzielle Erprobung.

Der Hyundai ix35 FCEV wurde seit 2013 in Kleinserie gefertigt und an Kunden ausgeliefert, er wurde 2018 vom Nexo abgelöst.

2014 präsentierte Toyota den „FCV“, der seit Herbst 2015 unter dem Namen Toyota Mirai produziert wird. Im November 2015 fanden die ersten Probefahrten in Deutschland statt. Eine Tankfüllung reicht bei etwa 90 km/h für bis zu 500 Kilometer. Das Nachtanken dauert 5 bis 15 Minuten.

Schau mal hier: >>> Brennstoffzellenfahrzeug <<< - Dort wird jeder fündig.

Bei mobilverzeichnis.de finden Sie fast alles, was mit Autopreisen, Fahrzeugdaten, Baureihen, oder Codes zu tun hat. - Datenbank für Automobile, Gebrauchtwagen, Oldtimer, Youngtimer und Nutzfahrzeuge.

Alle verwendeten Logos, Markennamen und Markenzeichen sind Eigentum Ihrer Inhaber.

Teilweise werden auf unseren Seiten Texte, Abschnitte oder einzelne Passagen aus "Wikipedia – Die freie Enzyklopädie" verwendet.

Autoteile-Preiswert Autokatalog | VIN Decoder | Kfz-Versicherung | Auto-Preislisten zum kostenlosen DownloadPressemeldungen | Webverzeichnis | Oldtimer Wertgutachten |